СПРОСИ ПРОФИ
👍
0
👎 03

Внутри треугольника АВС выбрана точка О

Внутри треугольника АВС выбрана точка О так, что sin ( ВОС )= 1/5, sin ( АОС ) = 2/7. Известно, что ВО = 3, ВС = 4, АС = 6. Найти расстояние между центрами окружностей, описанных около треугольников АОС и ВОС.
ЕГЭ по математике геометрия математика обучение     #1   03 ноя 2012 12:21   Увидели: 36 клиентов, 1 специалист   Ответить
👍
0
👎 0
Вот, то что надо. Я пока правда не думал над ней. Здесь 1 случай? Постарайтесь выбирать задачи с 2 случаями, как в реальном С4. А можно и больше 2 случаев :)
👍
0
👎 0
Там 2 случая, но один отпадает. А вообще мне кажется стоит по геометрии выкладывать и средние задачи, ибо средний уровень знания школьниками геометрии сейчас откровенно слабый((
👍
0
👎 0
Это и есть подготовительная. :-)

Задайте свой вопрос по математике
профессионалам

Сейчас онлайн 75 репетиторов по математике
Получите ответ профи быстро и бесплатно

Другие вопросы на эту тему:

👍
0
👎 04

Планиметрия, подготовка к ЕГЭ   4 ответа

В трапеции ABCD отношение длин оснований AD и BC равно 3. Диагонали трапеции пересекаются в точке O, площадь треугольника AOB равна 6. Найдите площадь трапеции.

Знаю, что треугольники, образованные диагоналями и боковыми сторонами, равновеликие. Т.е. Площадь AOBравна площади COD. И площади треугольников AOD и BOC относятся как 3^2, т.е. 9. Как из этих данных вывести решение, не знаю.
  11 дек 2014 15:56  
👍
0
👎 012

В прямоугольном треугольнике   12 ответов

А вот никак не могу решить. В прямоугольном треугольнике из вершины прямого угла проведена высота CD. Найти стороны этого треугольника, если радиус окружности, вписанной в треугольник АВС равен 2, а периметр треугольника АСD равен 14,4.
👍
+1
👎 11

Задача 1   1 ответ

Задача 1. Окружность, вписанная в треугольник АВС, площадь которого равна 66, касается средней линии, параллельной стороне ВС. Известно, что ВС равно 11. Найдите сторону АВ.
👍
+2
👎 29

Задача по геометрии   9 ответов

Перпендикуляр к боковой стороне [m]AB[/m] трапеции [m]ABCD[/m], проходящей через её середину [m]K[/m], пересекает сторону [m]CD[/m] в точке [m]L[/m]. Известно, что площадь четырехугольника [m]AKLD[/m] в [m]5[/m] раз больше площади четырехугольника [m]BKLC[/m], [m]CL = 3[/m], [m]DL = 15[/m], [m]KC = 4[/m]. Найти длину отрезка [m]KD[/m].
ASK.PROFI.RU © 2020-2022