СПРОСИ ПРОФИ
👍
−1
👎 -11

Помогите решить срочно!!!

Барон Мюнхгаузен называет натуральное число «таинственным», если в разложении этого числа каждый его простой множитель содержится в нечётной степени. Например, число 4000=2^5⋅5^3 — «таинственное». Барон утверждает, что нашёл 15 подряд идущих «таинственных» чисел. Какое максимальное число таких чисел он мог найти на самом деле?

Задайте свой вопрос по высшей математике
профессионалам

Сейчас онлайн 75 репетиторов по высшей математике
Получите ответ профи быстро и бесплатно

Другие вопросы на эту тему:

👍
−2
👎 -20

Задача 7 класс   0 ответов

Маша задумала натуральное число. Она возвела его в квадрат, а затем результат поделила на 3 с остатком. Неполное частное оказалось простым числом. Что задумала Маша? Укажите все возможные варианты и докажите, что нет других.

  10 ноя 2022 17:12  
👍
0
👎 00

Комбинаторика_свойство чисел Стирлинга 1-го рода_коэффициенты многочлена   0 ответов

Добрый день!

Можно ли обратиться к Вам по следующему вопросу? Как известно числа Стирлинга первого рода являются коэффициентами при обычных степенях при разложении факториальной степени на сумму обычных степеней. И это свойство чисел Стирлинга связано с циклической структурой подстановки. Можно для начала спросить у Вас, есть ли где-нибудь именно комбинаторное доказательство (а еще лучше объяснение, как например, комбинаторно объясняют биноминальные…
ASK.PROFI.RU © 2020-2024